SC513T					Laser Physics and Spectroscopy					
Teaching Scheme				eme	Examination Scheme					
L	т	Р	с	Hrs/Week _	Theory			Practical		Total Marks
					MS	ES	IA	LW	LE/Viva	
3	0	0	3	3	25	50	25			100

COURSE OBJECTIVES

- **To understand the fundamental concepts of Laser principles.**
- It opposite the knowledge of Laser beam properties and methods of Laser pulse generation
- To provide knowledge of various Laser spectroscopic techniques
- To introduce some advanced Laser spectroscopic techniques

UNIT 1 Introduction to Lasers

History of Laser; Classical absorption of light; Quantum absorption of light; Interaction of Light with matter: Absorption and Emission processes; Light Source; Properties of Laser, Einstein Coefficients and Light Amplification; Population Inversion; Pumping; Gain.

UNIT 2 Laser Fundamentals

Laser rate equations; Three & four level Lasers; Laser beam propagation; Properties of Gaussian beam; Resonator; Various types of resonators; Resonator for high gain and high energy Lasers; Gaussian beam focusing; General lasers and their types: CW and pulsed Lasers; Laser pulse generation: Q-switching and mode locking; ultra-short (nanosecond, picosecond and femtosecond) laser pulse generation.

UNIT 3 Introduction to Laser Spectroscopic techniques

Laser systems for spectroscopy; Instrumentation for detection of optical signals and time-resolved measurements; Pump and probe techniques; Absorption and fluorescence spectroscopy; Raman spectroscopy: basics and instrumentation.

UNIT 4 Applications of Lasers in spectroscopy

Laser-induced breakdown spectroscopy; Nonlinear spectroscopy: linear and nonlinear absorption; Terahertz spectroscopy; Special applications of laser spectroscopy: Single molecule detection, trace level detection of explosives and hazardous gases; Future of laser spectroscopy.

Max. <44> Hrs.

12 Hrs.

10 Hrs.

10 Hrs.

12 Hrs.

COURSE OUTCOMES

On completion of the course, student will be able to

CO1 - Acquire basic knowledge about the fundamental processes associated with lasers and spectroscopy

- CO2 Analyze the properties of the Laser beam and solve related problems
- CO3 Comprehend the significance of Lasers in spectroscopy
- CO4 Understand and learn the principles involved in various laser and spectroscopic systems
- CO5 Correlate the laser properties with the spectroscopic techniques

CO6 - Develop the skills needed to solve various problems in applications related to laser and spectroscopy

TEXT/REFERENCE BOOKS

- 1. O Svelto, Principles of lasers, 5th edition, Springer (2010).
- 2. W. T. Silfvast, Laser Fundamentals, 2nd Edition, Cambridge University Press (2004).
- 3. K. Thyagrajan and Ajoy Ghatak, LASER fundamentals and its applications, 2nd edition, Springer (2010).
- 4. Andrews and Demidov, An introduction to Laser Spectroscopy, 2nd edition, Springer (2002).
- 5. Demtroder W, Laser Spectroscopy: Basic Concepts and Instrumentation, 3rd edition, Springer (2004)
- 6. Radziemski L J, Solarz R W, Paisner J A, Laser Spectroscopy and its Applications, Marcel Dekker (1987)
- 7. M. S. Feld and V. S. Lethokov, Nonlinear laser Spectroscopy, Springer (1980).
- 8. Stenholm, Foundations of laser spectroscopy, Wiley (1999).

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100	Exam Duration: 3 Hrs		
Part A/Question: 3 Questions from each unit, each carrying 3 marks	36 Marks		
Part B/Question: 2 Questions from each unit, each carrying 8 marks	64 Marks		